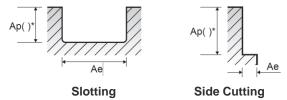
Speeds and Feeds

- 1) Select your material in the ISO colored chart with respect to material description.
- 2) Start with a middle/average value for spindle speed, n (RPM) and feed rate, V_f (in/min). Adjust the spindle speed and/or feed rate based on your cutting conditions.

End Mill Series - HSAM2

Recommended Cutting Values – Slotting									
Tool Diameter (in)									
3/4									
2000									
0.0075									
10200									
230									
600									
0.0075									
3060									
69									
880									
0.006									
4480									
81									
1670									
0.012									
8510									
306									

NOTE: All cutting data are target values.


Maximum recommended depth shown.

Finish cuts typically require reduced feed rates and/or higher spindle speed, with a radial depth of cut, a_e of (2%)XD or less.

Reduce speed and feed recommendations for materials harder than listed.

Reduce cut depth and feed by 50% for long-flute or long-reach tools.

Above recommendations are based on ideal conditions. Adjust parameters accordingly for smaller taper machining centers or less rigid conditions.

Tech Tips: The tables above are based on common machining calculators.

We realize that shops may not have the RPM capability shown in the tables.

To adapt the tables to the machining conditions available, use the following calculation:

(Recommended Feed IPM / Recommended RPM) X Available RPM = IPM

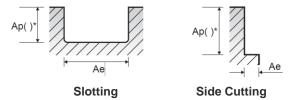
Speeds and Feeds

- 1) Select your material in the ISO colored chart with respect to material description.
- 2) Start with a middle/average value for spindle speed, n (RPM) and feed rate, V_f (in/min). Adjust the spindle speed and/or feed rate based on your cutting conditions.

End Mill Series - HSAM2

Material			Recommended Cutting Values - Side Cutting									
G	Group					Tool Diameter (in)						
ISO	VDI 3323	Material Description	Width of Cut, a _e	Depth of Cut, a _p	Parameter	1/8	3/16	1/4	3/8	1/2	5/8	3/4
N	21-22	Aluminum-Wrought Alloy	0.5D	1.5D	Vc, SFM	3000	3000	3000	3000	3000	3000	3000
					Fz, IPT	0.001	0.002	0.003	0.0045	0.006	0.0066	0.0075
	21 22				n, RPM	91700	61120	45800	30600	23000	18300	15300
					Vf, IPM	275	367	412	413	414	362	344
		Aluminum-Cast Alloy	0.5D	1.5D	Vc, SFM	800	800	800	800	800	800	800
	23-25				Fz, IPT	0.001	0.002	0.003	0.0045	0.006	0.0066	0.0075
					n, RPM	24450	16300	12220	8150	6110	4890	4080
					Vf, IPM	73	98	110	110	110	97	92
		Copper and Copper Alloys (Bronze/Brass)	0.5D	1.5D	Vc, SFM	1150	1150	1150	1150	1150	1150	1150
	26-28				Fz, IPT	0.0008	0.0014	0.002	0.004	0.005	0.0055	0.006
					n, RPM	35140	23430	17570	11720	8790	7030	5860
					Vf, IPM	84	98	105	141	132	116	105
	29.1	Non-Metallic Materials (Duroplastic)	0.5D	1.5D	Vc, SFM	2070	2070	2070	2070	2070	2070	2070
					Fz, IPT	0.0015	0.0028	0.004	0.0075	0.01	0.011	0.012
					n, RPM	63260	42170	31630	21090	15820	12650	10540
					Vf, IPM	285	354	380	474	474	418	380

NOTE: All cutting data are target values.


Maximum recommended depth shown.

Finish cuts typically require reduced feed rates and/or higher spindle speed, with a radial depth of cut, a_e of (2%)XD or less.

Reduce speed and feed recommendations for materials harder than listed.

Reduce cut depth and feed by 50% for long-flute or long-reach tools.

Above recommendations are based on ideal conditions. Adjust parameters accordingly for smaller taper machining centers or less rigid conditions.

Tech Tips: The tables above are based on common machining calculators.

We realize that shops may not have the RPM capability shown in the tables.

To adapt the tables to the machining conditions available, use the following calculation:

(Recommended Feed IPM / Recommended RPM) X Available RPM = IPM

Speeds and Feeds

Feed Rate, Per Revolution (mm/min)

$$v_f = f_n \cdot n$$

Feed Rate, Per Tooth (mm/min)

$$v_f = f_z \cdot n \cdot Z$$

Feed Per Revolution (mm/rev)

$$f_n = \frac{v_f}{n}$$

Feed Per Tooth (mm)

$$f_z = \frac{v_f}{n \cdot Z}$$

Cutting Speed (m/min)

$$v_c = \frac{\pi \cdot D_{tool} \cdot n}{1000}$$

Spindle Speed (rev/min)

$$n = \frac{v_c \cdot 1000}{\pi \cdot D_{tool}}$$

Material Removal Rate (mm³/min)

$$MMR = \frac{a_p \cdot a_e \cdot v_f}{1000}$$

Metric

Symbol	Definition	Unit		
V_f	Feed rate	mm/min		
f_n	Feed per revolution	mm/rev		
$f_{_{\!Z}}$	Feed per tooth	mm		
V_{c}	Cutting speed	m/min (SMM)		
n	Spindle speed	rev/min (RPM)		
D_{tool}	Tool cutting diameter	mm		
MMR	Material removal rate	(mm³/min)		
a_e	Radial depth of cut	mm		
a_p	Axial depth of cut	mm		
Z	Number of teeth/flutes			