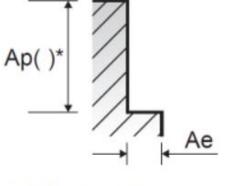


Side Cutting


HaasTooling.com | HaasCNC.com

1) Select your material in the ISO colored chart with respect to material description.

2) Start with a middle/average value for spindle speed, n (RPM) and feed rate, Vf (mm/min). Adjust the spindle speed

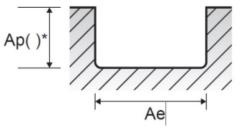
and/or feed rate based on your cutting conditions.

										End	Mill Ser	ies - HS	AM3
		Material	Recommended Cutting Values - Side Cutting										
Group Material Description			Width of Cut, a	Depth of Cut, a _p	Doromotor	Cutting Diameter (mm)							
ISO	VDI 3323	Material Description	which of cut, a _e	Deptil of Cut, ap	Parameter	3	4	6	8	10	12	16	20
					Vc, SMM	310	415	625	650	820	985	985	820
	21		Ø3 - Ø10 = 0.25D	1.0D	Fz, MMPT	0.002	0.002	0.003	0.005	0.005	0.006	0.008	0.009
	21			1.00	n, RPM	10080	10080	10080	7960	7960		3980	
		Aluminum Wrought Allow			Vf, MMPM	36	43	60	71	82	102	94	75
	22	- Aluminum-Wrought Alloy	Ø3 - Ø10 = 0.25D Ø12 - Ø20 = 0.5D		Vc, SMM	310	415	625	650	820	985	985	820
				1.00	Fz, MMPT	0.002	0.002	0.003	0.005	0.005	0.006	0.008	0.009
				n, RPM	10080	10080	10080	7960	7960	7960	5970	3980	
					Vf, MMPM	36	43	60	71	82	102	94	75
Ν					Vc, SMM	205	270	405	425	435	640	640	535
	23		Ø3 - Ø10 = 0.25D	1.0D	Fz, MMPT	0.002	0.002	0.003	0.004	0.005	0.006	0.008	0.009
	23	Aluminum-Cast Alloy	Ø12 - Ø20 = 0.5D) = 0.5D	n, RPM	6550	6550	6550	5170	5170	5170	3880	2590
					Vf, MMPM	23	28	39	46	53	66	61	48
	24		Ø3 - Ø10 = 0.25D Ø12 - Ø20 = 0.5D	1.0D	Vc, SMM	205	270	405	425	435	640	640	535
					Fz, MMPT	0.002	0.002	0.003	0.004	0.005	0.006	0.008	0.009
					n, RPM	6550	6550	6550	5170	5170	5170	3880	2590
					Vf, MMPM	23	28	39	46	53	66	61	48

Side Cutting

NOTE: Feed to be reduced by approximately 50% if LOC (length of cut) is over 3XD. The above recommendations are based on ideal conditions; for smaller taper machining centers or less rigid conditions, please adjust parameters accordingly on diameters greater than 12mm. In profile operations, engaging more than 2XD, reduce the radial depth of cut, ae by 50%-60%. Finish cuts typically require reduced cutting feeds and speeds; also, it is recommended the radial depth of cut, ae should not exceed (2%)XD.

Slotting


HaasTooling.com | HaasCNC.com

1) Select your material in the ISO colored chart with respect to material description.

2) Start with a middle/average value for spindle speed, n (RPM) and feed rate, Vf (mm/min). Adjust the spindle speed

and/or feed rate based on your cutting conditions.

								End Mill Series - HSAM3					
Material			Recommended Cutting Values - Slotting										
Group Material Description		Width of Cut, a _e	Dopth of Cut a	Parameter	Cutting Diameter (mm)								
ISO	VDI 3323	Material Description	which of cut, a _e	Depth of Cut, a _p	Falameter	3	4	6	8	10	12	16	20
					Vc, SMM	310	415	625	655	820	985	985	820
	21		1D	0.5D	Fz, MMPT	0.001	0.002	0.002	0.004	0.004	0.005	0.006	0.008
	21	Aluminum-Wrought Alloy	ID	0.5D	n, RPM	10080	10080	10080	7960	7960	7960	5970	3980
Ν					Vf, MMPM	28	35	48	55	66	82	74	63
	22		1D	0.5D	Vc, SMM	310	415	625	655	820	985	985	820
					Fz, MMPT	0.001	0.002	0.002	0.004	0.004	0.005	0.006	0.008
				0.50	n, RPM	10080	10080	10080	7960	7960	7960	5970	3980
					Vf, MMPM	28	35	48	55	66	82	74	<mark>6</mark> 3
IN			1D	0.5D	Vc, SMM	200	270	405	425	530	640	640	535
	23				Fz, MMPT	0.001	0.002	0.002	0.004	0.004	0.005	0.006	0.008
	25				n, RPM	6550	6550	6550	5170	5170	5170	3880	2590
		Aluminum-Cast Alloy			Vf, MMPM	18	23	31	36	43	53	48	41
	24		1D	0.5D	Vc, SMM	200	270	405	425	530	640	640	535
					Fz, MMPT	0.001	0.002	0.002	0.004	0.004	0.005	0.006	0.008
					n, RPM	6550	6550	6550	5170	5170	5170	3880	2590
					Vf, MMPM	18	23	31	36	43	53	48	41

Slotting

NOTE: Feed to be reduced by approximately 50% if LOC (length of cut) is over 3XD. The above recommendations are based on ideal conditions; for smaller taper machining centers or less rigid conditions, please adjust parameters accordingly on diameters greater than 12mm. In profile operations, engaging more than 2XD, reduce the radial depth of cut, ae by 50%-60%. Finish cuts typically require reduced cutting feeds and speeds; also, it is recommended the radial depth of cut, ae should not exceed (2%)XD.

Feed Rate, Per	Feed Rate, Per
Revolution	Tooth
(mm/min)	(mm/min)
$v_f = f_n \cdot n$	$v_f = f_z \cdot n \cdot Z$
,	, , , , , , , , , , , , , , , , , , , ,
Feed Per Revolution	Feed Per Tooth
(mm/rev)	(mm)

Cutting Speed (m/min)							
$v_c = \frac{\pi \cdot D_{tool} \cdot n}{1000}$							

Spindle Speed (rev/min)						
$n = \frac{v_c \cdot 1000}{1000}$						
$\pi - \pi \cdot D_{tool}$						

Material Removal Rate (cm³/min)					
$MMR = \frac{a_p \cdot a_e \cdot v_f}{1000}$					

Metric

Symbol	Definition	Unit		
V _f	Feed rate	mm/min		
f_n	Feed per revolution	mm/rev		
f_z	<i>f_z</i> Feed per tooth			
V _C	Cutting speed	m/min (SMM)		
п	Spindle speed	rev/min (RPM)		
D _{tool}	Tool cutting diameter	mm		
MMR	Material removal rate	(cm³/min)		
a _e	Radial depth of cut	mm		
a _p	<i>a_p</i> Axial depth of cut			
Ζ	Number of teeth/flutes			

